
International Journal of Theoretical Physics, Vol. 27, No. 11, 1988 

Swinging Atwood Machine. Far- and 
Near-Resonance Region 
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The swinging Atwood machine, a prototype nonlinear dynamical system, is 
analyzed following an idea of Bogoliubov and Mitropolsky. A series solution is 
found for the radial and angular displacement as functions of time. The analysis 
is repeated in the resonance case, when the frequency of the driving force 
maintains a fixed ratio to that of the free motion. The condition of resonance 
requires the mass ratio /z to be equal to 2j 2-1 ,  where j is an integer not equal 
to one. 

1. INTRODUCTION 

The analysis of nonlinear dynamical systems is of utmost importance 
in various branches of modern science (Feigenbaum, 1982), and many 
techniques have been discovered to analyze and study such problems 
(Guckenheimer and Holmes, 1983). Nonlinearity appears at the very root 
of classical dynamics, a simple example being the case of a pendulum. 
Another classic nonlinear system is the swinging Atwood machine initially 
discussed by Tufillaro et al. (1984; Tufillaro, 1985). Here we present a 
detailed analysis and explicit solution of such a system following an idea 
of Bogoliubov and Mitropolsky (1961). The cases of resonance and nonres- 
onance are discussed separately and the possible and admissible values of 
the mass ratio ( r e ~ M )  -1 are obtained from the condition of resonance. 

2. FORMULATION 

The basic equations of motion for the swinging Atwood machine in 
polar coordinates (r, 0) can be written as 

(1 +/z)/~= r02+ g(cos 0 - p~) 
(1) 

r0" = - 2 i 0 - g  sin 0 
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where 0 is the inclination to the vertical and Ix is the mass ratio (=M/m) .  
To convert it in an autonomous form, we set 

0 = y ;  t :=x  

whence 

where 

d x  r - - y + g  - -  
dO 1 +ix 

cos 0 - IX 

y ( l + i x )  

dy 2x sin 0 

dO- r g ry 

(2) 

Eliminating x from these, we arrive at a second-order equation for y: 

d 2 y 2  ( d y )  
d O 2 ~ - ~ y = g f  O , y , ~  (3) 

dy) 3+IX cos0~_ 2IX l + s i n 0  1 dy 
f O,y,--~ r ( l + i x )  y r ( l+ix~ y r y2 dO 

Equation (3) actually describes the case of a perturbed harmonic motion 
with frequency w2=2/(1  +IX), when g = 0. Equation (3) has a solution of 
the form 

y = a cos 0; qJ = wO + ~ (4) 

Following (4), we seek a solution of the perturbed system in the form 

y=acos6+gu~(a,~p,O)+g2u2(a, 6, O)+O(g3)+ . . .  (5) 

whence the equations of modulated amplitude a and phase 0 are 

da 
- - ~  , , , dO gA~(a)+g2A2(a)+ 

(6) 
d___~ = w + gBa(a) + g2B2(a) +. �9 �9 
dO 

The functions Al(a),  Bl(a), and ul are constructed from the Fourier 
expansions o f f  occurring on the right-hand side of equation (3), 

A l ( a ) -  1 f o = f ) =  47r2 w fo(a, ~b, 0') sin 4, dO' d~b 

=o (7) 
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For the nonresonant case, BI is given as 

where 

1 Io"= Ion= L cos 0' 1 
B l ( a ) -  47r2wa cos 41 +mcos----~ 

+ N  
sin 0' sin $ 

cos ~b dO' dO 
COS2 5 

2 / *  �84 

(l + /*)rwa 2 (8) 

whence 

y = ao cos 5 + gul(a, 5, 0)+ O(g 2) 

with ul given in (11). 

3+/* 2/2 w 
L -  M N = - - -  

ar( l+/*)  ' ar( l+/~) ' ar 

On the other hand, the expression for u~ is (Bogoliubov and Mitropolsky, 
1961) 

1 ( c o s ( n 0 ' + m 5 )  sin(n0'+mqJ) . ] 
u1(a, 5,0')=Z--~- ~ w2_(nv+mw)2I ,+w2_(nv+mw)212~ .  (9) 

IO'  Io ,. fcos(n0'+ mq,)/ 
I,,2 = fo(a, 5, 0 ) /sin(n0'+ mw)~ dO' d5 (10) 

with w2# (nv + mw) 2. Keeping terms up to a few harmonics, we get 

M 2(L+N)  
ul(a, 0, 0') = ~ w  2 cos 30-~ w M _ (v+ w) 2 cos(0'+ 5) 

p 

2 ( L - N )  cos (0 ' -5 )  2(L+3N) . , 
W2 (/..,__W)2 W'~ ~ ~'-~ 7 ~W)2 C0S(0 +3~b) 

2 ( 3 N -  L) 
+ w2--~v -~w)2 cos(O'- 35) (11) 

In our present case v = 1. 

S o  the corresponding solution of (6) up to first order in g is 

0 (12) 
2/*g 

a=cons t .=ao ,  5 = w ( l+tz)rwa~] 
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3. RESONANCE CASE 

Consider the case when the driving term frequency is proportional to 
the original frequency w, that is (Strubble, 1974), 

w ~-p/q (13) 

(p, q) being prime numbers. Near the resonance region we set 

w 2 = [ (p /q)  912+ gA (14) 

The condition for resonance leads to 

n q + ( m •  l )p=O 

whence 

and finally 

q 
Al(a, ~), - f  E eiqr 

4"rr r,p,~ 

Jl(~) = fo(a, O, O')e -~q~" sin O' dO' d~ (15) 

Bl(a, q~) =A q q y e iq~ o. ) 2 p~' 4r "~ 

io io J2(tr) = fo(a, 0', ~)e -iq~ cos ~ dO' dth (16) 

~ = 0 - - P  1,0 
q 

Evaluating the elementary trigonometric integrals (for o - =  1, others 
being zero; also, we have set q = 2 ) ,  we obtain 

iq eiq~/27r2(3 +/x) 47r2W / 
A l ( a , ~ ) =  4~.2p [ a r ( l+ /x )  a-~ j 

- 2i~r2 e 2 i ~ ( 2 N - L )  (17) 
47r 2 

= + i ( L - 2 N ) e  2i~ 

Also, Bl(a, ~) turns out to be 

B,(a, r = A+-~w2 e 2~* (18) 
a - r  
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So, up to first order in g, the equations for amplitude and phase turn out 
to  be 

da dq~ 
- gAl(a ,  O, ~); - gBa(a, O, q~) (19) 

dO dO 

Using the expressions for Aa and B1, we eliminate a and obtain the following 
equation for q~: 

d2cp dq~ 2 . ( 2 i A g + 2 g A  

= _g2A 2 /3r (20) 
grw 

We now set d~/dO = Z. Then (20) is converted to 

+ Z2K3 - ZK2 - Ka = 0 (21) 

with Ka = - 2 i -  f i r /gw,  K 3 = - g A 2 f l r / w ,  and K2 = 2iAg + 2Agf lr /w.  
Integrating (19), we arrive at 

-Ca  In cosh[Ca0 +tanh-a (m ' /2Ca)]  - m'CaO 
q~ - C2 _ m,2/4 (22) 

with Ca = (m'2/4+ n ' )  a/2, m '=  K2 /K3 ,  and n '=  K1/K3 .  Once q~ is explicitly 
determined by (22), a is known via 

a2 = gw e 2i~ 

r ~ - g A  

Finally, it is interesting to observe that the condition of resonance 
leads to 

- =  if p = l  
q 

Then 

/z = 2 q 2 - 1  ( q ~  1). (23) 

Equation (23) yields the possible physical values of /z, the mass ratio 
occurring in the Atwood machine. 

4. CONCLUSION 

In the above analysis we found explicit solutions for the amplitude 
and phase up to first order in g, considering separately the cases of resonance. 
It is an interesting outcome of this analysis that the mass ratio, which was 
arbitrary to start with, becomes determined and is equal to 2j 2 -1 ,  j an 
integer. 
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